剩余污泥是城市污水處理廠活性污泥法處理廢水的一種必然副產(chǎn)物,其有效處理已成為城市污水處理廠正常運(yùn)行的保證. 剩余污泥含水率較高(一般高于99%),脫水性能較差、固體回收較為困難,而污泥調(diào)理可有效提高污泥的脫水性能,是污泥脫水前的一種重要處理手段. 污泥調(diào)理有很多方法,目前廣泛使用的是化學(xué)調(diào)理方法,化學(xué)調(diào)理的實(shí)質(zhì)是利用各種凝聚劑使污泥顆粒絮凝,結(jié)構(gòu)增強(qiáng),以利于機(jī)械脫水,其中,采用聚電解質(zhì)調(diào)理是污泥化學(xué)調(diào)理中zui為常用的手段. 聚電解質(zhì)等化學(xué)藥劑能較大幅度地提高污泥脫水性能和污泥固體回收率,但其使用成本較高、藥劑隨污泥棄置后對(duì)環(huán)境潛在的二次污染問題不容忽視. 因此,研發(fā)環(huán)保、、低運(yùn)行成本的新型污泥調(diào)理技術(shù)十分迫切.
電化學(xué)處理是利用電化學(xué)的方法將難降解有機(jī)物或生物毒性污染物降解,廣泛應(yīng)用于廢水處理當(dāng)中,并在污泥中揮發(fā)性有機(jī)物(VSS)的降解方面開始得到關(guān)注. 在污泥脫水方面,電化學(xué)處理技術(shù)亦有所應(yīng)用。通過電化學(xué)預(yù)處理污泥后,當(dāng)其表面活性劑CTAB添加量為2000 mg·L-1時(shí)污泥脫水性能得到改善. 本課題組前期研究表明,在21V,12min電化學(xué)處理?xiàng)l件下,采用Ti /RuO2網(wǎng)狀析氯電極,污泥的CST下降了18.8%,污泥脫水性能得到一定改善,然而,相關(guān)作用因素尚有待探討. 本文以銥/二氧化釕析氧電極板為陽極、鈦/二氧化釕網(wǎng)狀極板為陰極,研究了電壓和電解時(shí)間與污泥調(diào)理效果之間的關(guān)系,并在此條件下,對(duì)電化學(xué)處理改善剩余污泥脫水性能的相關(guān)作用因素進(jìn)行了探討.
2、材料與方法
2.1實(shí)驗(yàn)材料
實(shí)驗(yàn)所采用的剩余污泥取自上海市閔行區(qū)水質(zhì)凈化廠二沉池,經(jīng)重力濃縮24h后4℃保藏備用. 整個(gè)實(shí)驗(yàn)在48h內(nèi)完成. 污泥基本性質(zhì)為:pH值為6.56,含固率為1.0%,VSS/TSS為69.7%.
圖1電化學(xué)實(shí)驗(yàn)裝置示意圖( 1. 恒壓直流電源; 2. 反應(yīng)器; 3.恒溫磁力攪拌器; 4. 鈦/二氧化釕陰極; 5. 銥/二氧化釕陽極; 6. 電壓表; 7. 電流表)
2.2實(shí)驗(yàn)裝置
電化學(xué)處理裝置為有機(jī)玻璃制作的圓柱形反應(yīng)器,內(nèi)徑為10cm,體積為1200mL.極板面積為100cm2.電源為GPS5010H穩(wěn)壓直流電源; 攪拌設(shè)備為JB-3A型定時(shí)恒溫磁力攪拌器; 離心設(shè)備為飛鴿TDL-5-A型離心機(jī).Ir /RuO2電極板為陽極,Ti /RuO2網(wǎng)狀極板為陰極. 根據(jù)課題組前期研究結(jié)果( Yuan et al. , 2010) ,選定板間距為4 cm攪拌速率為100 r·min - 1 作為本實(shí)驗(yàn)條件. 實(shí)驗(yàn)裝置如圖1所示.
2.3分析方法
pH 值采用pHS-3C 精密pH 計(jì)測(cè)定; 揮發(fā)性懸浮物質(zhì)(VSS) 、懸浮物質(zhì)(TSS) 采用標(biāo)準(zhǔn)稱重法檢測(cè); CST 采用圓柱型直槽式CST測(cè)定儀測(cè)定,濾紙采用Whatman17#型濾紙. 污泥上清液蛋白采用考馬斯亮藍(lán)G-250 染色法測(cè)定; 污泥上清液多糖采用蒽酮-硫酸法測(cè)定.污泥形態(tài)分析采用掃描電子顯微鏡。
3、實(shí)驗(yàn)結(jié)果
3.1電化學(xué)處理對(duì)污泥脫水性能的影響
采用析氧電極,在攪拌速率100 r·min-1,板間距4cm條件下,電壓和電化學(xué)處理時(shí)間對(duì)污泥脫水性能均具有較大影響,實(shí)驗(yàn)結(jié)果如圖2所示.
圖2 不同電壓、電化學(xué)處理時(shí)間下污泥CST 變化
圖2不同電壓、電化學(xué)處理時(shí)間下污泥CST 變化污泥的CST值在各個(gè)處理的不同處理階段都有一定下降. 低電壓(<30V)作用下,污泥的CST在電化學(xué)處理初始階段呈下降趨勢(shì),隨著處理時(shí)間的延長(zhǎng),CST保持穩(wěn)定狀態(tài). 當(dāng)電壓大于20V時(shí),污泥的CST呈現(xiàn)先減小后增大的趨勢(shì). 在50V,5min處理?xiàng)l件下,污泥CST下降了25.5%,之后隨著處理時(shí)間的延長(zhǎng),CST快速增大,處理45min后,CST與對(duì)照相比增加了22.5%. 在30V處理電壓作用下,CST于30min 時(shí)達(dá)到zui低值,與對(duì)照相比下降了35.5%,之后隨處理時(shí)間的延長(zhǎng)而上升. 因此,在電壓為30V,電極板間距為4cm時(shí),電化學(xué)處理30min,污泥脫水性得到較大改善,這與Yuan 等的研究結(jié)果相比,污泥脫水性能得到較大提高.
3.2電化學(xué)處理對(duì)污泥上清液EPS 濃度的影響
胞外聚合物(EPS) 普遍存在于剩余污泥內(nèi),其主要成分為糖類和蛋白質(zhì),兩者的TOC占整個(gè)EPS的70%~80%。 EPS分子可以從細(xì)胞表面伸展出來,阻礙細(xì)胞之間的親密接觸,形成密實(shí)的凝膠,阻止結(jié)合水從凝膠的微孔擠出,所以EPS的存在使脫水性變差.
圖3 不同電壓、電化學(xué)處理時(shí)間下污泥上清液EPS 濃度變化
圖3不同電壓、電化學(xué)處理時(shí)間下污泥上清液EPS濃度變化由圖3可知,低電壓(<30V)處理作用下,污泥上清液的EPS濃度在處理過程中較為穩(wěn)定; 在高電壓50V處理作用下,上清液的EPS濃度處理10min以后急劇增加,并于45min時(shí)達(dá)到zui大值,與對(duì)照相比增加了446.7%.而在30V處理電壓作用下,污泥上清液EPS濃度呈現(xiàn)先緩慢下降后上升的趨勢(shì),并于30min達(dá)到zui低點(diǎn),下降了17.4%,這與CST的變化趨勢(shì)相一致. 污泥電化學(xué)處理后EPS濃度降低,使得污泥脫水性能得到改善.
3.3電化學(xué)處理對(duì)污泥上清液蛋白濃度的影響
蛋白作為EPS 的重要組成部分,其含量增加會(huì)使脫水性能降低.污泥上清液蛋白濃度變化如圖4所示,其變化趨勢(shì)與EPS濃度相似. 在30V,30min的電化學(xué)處理?xiàng)l件下,EPS中蛋白濃度下降較為明顯,下降了30.2%,從圖2可知,此時(shí)CST的值也達(dá)到zui低,這也說明蛋白濃度和CST呈一定的正相關(guān)關(guān)系. 而在高電壓50V作用下,隨著污泥絮體結(jié)構(gòu)的不斷破壞,EPS 濃度快速上升,蛋白濃度也隨之增加,和對(duì)照相比增加了495.5%,導(dǎo)致污泥脫水性能變差,污泥的CST也隨之升高. 因此,當(dāng)電化學(xué)處理電壓為30V時(shí),上清液中蛋白濃度降低,使污泥脫水性能得到改善; 在50V 電壓處理下,上清液蛋白濃度快速增加,使污泥脫水性能變差,研究結(jié)論相一致。
圖4 不同電壓、電化學(xué)處理時(shí)間下污泥上清液蛋白濃度變化
圖5 不同電壓、電化學(xué)處理時(shí)間下污泥上清液多糖濃度變化
3.4電化學(xué)處理對(duì)污泥上清液多糖濃度的影響
作為污泥EPS另一重要組分的多糖,因其含有羧基等親水性基團(tuán),對(duì)污泥脫水性能有負(fù)面影響.多糖濃度在污泥上清液中的變化如圖5 所示. 在電化學(xué)處理初始階段(<5 min) ,多糖濃度與對(duì)照相比都有一定的下降. 在高電壓(>20V) 處理作用下,下降較為明顯,zui高下降了27.0%,隨著處理時(shí)間的延長(zhǎng),大量有機(jī)物被降解同時(shí)污泥絮體結(jié)構(gòu)被破解,絮體所含大量顆粒物、EPS被釋放,造成污泥上清液多糖濃度增加,尤其是50V電壓處理45min后,多糖濃度增加了204.5%,使2201污泥脫水性能變差. 而低電壓(<30V) 作用下的多糖濃度則趨向穩(wěn)定.
3.5電化學(xué)處理對(duì)污泥形態(tài)的影響
利用SEM電子顯微鏡高分辨率的特點(diǎn),可揭示污泥顆粒內(nèi)部超微結(jié)構(gòu)特征,為研究胞外聚合物EPS等在污泥顆粒的形成,顆粒穩(wěn)定性和顆粒脫水機(jī)理分析等方面提供有價(jià)值的形態(tài)學(xué)依據(jù)。
經(jīng)不同電化學(xué)處理后的污泥電鏡掃描(SEM)結(jié)果如圖6所示. 污泥電化學(xué)處理前菌膠團(tuán)結(jié)構(gòu)較為完整,LB-EPS大量包裹于菌膠團(tuán)外部,對(duì)菌體起保護(hù)作用,并將大量自由水包裹于其內(nèi)(圖6a).在30V,30min的處理作用下,菌膠團(tuán)結(jié)構(gòu)遭到破損,處于表層的LB-EPS 被氧化并釋放出胞內(nèi)自由水,污泥脫水性能得到改善(圖6b). 高電壓50V處理30min后,結(jié)果顯示,污泥菌膠團(tuán)結(jié)構(gòu)嚴(yán)重破損,EPS被大量釋放到上清液中,同時(shí),污泥顆粒變小,比表面積增加,造成其對(duì)污泥中水分的吸附能力增強(qiáng),導(dǎo)致污泥脫水性能變差( 圖6c) .
4 結(jié)論
1)以Ir /RuO2電極板為陽極,Ti/RuO2網(wǎng)狀極板為陰極,極板間距為4cm,電壓為30V,攪拌速率100r·min-1條件下,電化學(xué)處理反應(yīng)30min,CST下降35.5%,污泥脫水性能得到較大改善.
2)低電壓作用下污泥上清液EPS、蛋白濃度在電化學(xué)處理過程中較為穩(wěn)定,對(duì)污泥脫水性能改善較?。?高電壓下的污泥上清液EPS、蛋白、多糖濃度隨處理時(shí)間延長(zhǎng)變化較大. 超過zui適電壓和處理時(shí)間,污泥上清液EPS,蛋白和多糖濃度急劇增加,導(dǎo)致污泥脫水性能變差,電壓較處理時(shí)間對(duì)其影響更大.
3)通過污泥電鏡分析,電化學(xué)處理前污泥菌膠團(tuán)結(jié)構(gòu)較為完整. 在30V,30min電化學(xué)處理作用下,污泥菌膠團(tuán)結(jié)構(gòu)遭受一定程度的破壞,包裹于其內(nèi)的自由水被釋放出來,污泥脫水性能得到改善.50V,30min處理作用下,污泥菌膠團(tuán)結(jié)構(gòu)嚴(yán)重破碎,導(dǎo)致EPS濃度上升,污泥脫水性能變差.
電話
微信掃一掃